广东公务员网数量关系经典解析(12.16)
13. 0, 1, 1, 1, 2, 2, 3, 4八个数字做成的八位数,共可做成______个。
A 2940 B 3040 C 3142 D 3144
――――――――――――――――――――
【广东公务员网解析】
这个题目 我在另外一个排列组合的帖子曾经讲过!
我们不妨先把这8个数字看作互不相同的数字,0暂时也不考虑是否能够放在最高位
那么这组数字的排列就是P(8,8),但是,事实上里面有3个1,和2个2,我们知道3个1我们在P(8,8)中是把它作为不同的数字排列的,现在相同了,那我们就必须从P(8,8)中扣除3个1的全排列P(3,3)关键这里是怎么扣除呢? 记住因为全排列是分步完成的,我们知道在排列组合中,分步相乘,分类相加。 可见必须通过除掉P(3,3)才能去掉这部分重复的数字形成的重复排列。 2个2当然也是如此
所以不考虑0作为首位的情况是 P88/(P33×P22)
现在我们再来单独考虑0作为最高位的情况有多少种:P77/(P33×P22)
最后结果就是:P88/(P33×P22)-P77/(P33×P22)=2940
A 2940 B 3040 C 3142 D 3144
――――――――――――――――――――
【广东公务员网解析】
这个题目 我在另外一个排列组合的帖子曾经讲过!
我们不妨先把这8个数字看作互不相同的数字,0暂时也不考虑是否能够放在最高位
那么这组数字的排列就是P(8,8),但是,事实上里面有3个1,和2个2,我们知道3个1我们在P(8,8)中是把它作为不同的数字排列的,现在相同了,那我们就必须从P(8,8)中扣除3个1的全排列P(3,3)关键这里是怎么扣除呢? 记住因为全排列是分步完成的,我们知道在排列组合中,分步相乘,分类相加。 可见必须通过除掉P(3,3)才能去掉这部分重复的数字形成的重复排列。 2个2当然也是如此
所以不考虑0作为首位的情况是 P88/(P33×P22)
现在我们再来单独考虑0作为最高位的情况有多少种:P77/(P33×P22)
最后结果就是:P88/(P33×P22)-P77/(P33×P22)=2940
点击分享此信息:
相关文章