广东公务员网数量关系经典解析(12.26)
22. 从360到630的自然数中有奇数个约数的数有()个?
A.25 B.23 C.17 D.7
――――――――――――
【广东公务员网解析】
这个题目我一般都是从问题提到的对象入手,自然数的约数?我们知道,求自然数约数无非就是将这个自然数分解因式然后看构成的数字形成多少个不同的乘积。
那么这个自然数就可以表示为自然数=A×B
A和B都是这个自然数的因数,也就是约数。
很明显一般情况下自然数的约数都是成对出现的,如 12=2×6,12=3×4,12=1×12,2和6是一对,3和4是一对,1和12是一对。既然是成对出现,那么这个自然数理论上说它的约数应该是偶数个才对。现在是奇数个。 什么样的情况会导致它是奇数个约数呢?
我们发现只有当这个自然数种一对约数相等的时候,就会少了1个约数,即A=B, 那么我们就看出这个自然数是一个平方数!
360~630 之间的平方数可以这样确定, 我们知道19的平方是361,25的平方是625,那么 这样的自然数就是 19~25 共计7个自然数的平方值。
A.25 B.23 C.17 D.7
――――――――――――
【广东公务员网解析】
这个题目我一般都是从问题提到的对象入手,自然数的约数?我们知道,求自然数约数无非就是将这个自然数分解因式然后看构成的数字形成多少个不同的乘积。
那么这个自然数就可以表示为自然数=A×B
A和B都是这个自然数的因数,也就是约数。
很明显一般情况下自然数的约数都是成对出现的,如 12=2×6,12=3×4,12=1×12,2和6是一对,3和4是一对,1和12是一对。既然是成对出现,那么这个自然数理论上说它的约数应该是偶数个才对。现在是奇数个。 什么样的情况会导致它是奇数个约数呢?
我们发现只有当这个自然数种一对约数相等的时候,就会少了1个约数,即A=B, 那么我们就看出这个自然数是一个平方数!
360~630 之间的平方数可以这样确定, 我们知道19的平方是361,25的平方是625,那么 这样的自然数就是 19~25 共计7个自然数的平方值。
点击分享此信息:
相关文章